5 research outputs found

    Smart Farm-Care using a Deep Learning Model on Mobile Phones

    Get PDF
    Deep learning and its models have provided exciting solutions in various image processing applications like image segmentation, classification, labeling, etc., which paved the way to apply these models in agriculture to identify diseases in agricultural plants. The most visible symptoms of the disease initially appear on the leaves. To identify diseases found in leaf images, an accurate classification system with less size and complexity is developed using smartphones. A labeled dataset consisting of 3171 apple leaf images belonging to 4 different classes of diseases, including the healthy ones, is used for classification. In this work, four variants of MobileNet models - pre-trained on the ImageNet database, are retrained to diagnose diseases. The model’s variants differ based on their depth and resolution multiplier. The results show that the proposed model with 0.5 depth and 224 resolution performs well - achieving an accuracy of 99.6%. Later, the K-means algorithm is used to extract additional features, which helps improve the accuracy to 99.7% and also measures the number of pixels forming diseased spots, which helps in severity prediction. Doi: 10.28991/ESJ-2023-07-02-013 Full Text: PD

    The Eye: A Light Weight Mobile Application for Visually Challenged People Using Improved YOLOv5l Algorithm

    Get PDF
    The eye is an essential sensory organ that allows us to perceive our surroundings at a glance. Losing this sense can result in numerous challenges in daily life. However, society is designed for the majority, which can create even more difficulties for visually impaired individuals. Therefore, empowering them and promoting self-reliance are crucial. To address this need, we propose a new Android application called “The Eye” that utilizes Machine Learning (ML)-based object detection techniques to recognize objects in real-time using a smartphone camera or a camera attached to a stick. The article proposed an improved YOLOv5l algorithm to improve object detection in visual applications. YOLOv5l has a larger model size and captures more complex features and details, leading to enhanced object detection accuracy compared to smaller variants like YOLOv5s and YOLOv5m. The primary enhancement in the improved YOLOv5l algorithm is integrating L1 and L2 regularization techniques. These techniques prevent overfitting and improve generalization by adding a regularization term to the loss function during training. Our approach combines image processing and text-to-speech conversion modules to produce reliable results. The Android text-to-speech module is then used to convert the object recognition results into an audio output. According to the experimental results, the improved YOLOv5l has higher detection accuracy than the original YOLOv5 and can detect small, multiple, and overlapped targets with higher accuracy. This study contributes to the advancement of technology to help visually impaired individuals become more self-sufficient and confident. Doi: 10.28991/ESJ-2023-07-05-011 Full Text: PD

    PDHS: Pattern-Based Deep Hate Speech Detection With Improved Tweet Representation

    No full text
    Automatic hate speech identification in unstructured Twitter is significantly more difficult to analyze, posing a significant challenge. Existing models heavily depend on feature engineering, which increases the time complexity of detecting hate speech. This work aims to classify and detect hate speech using a linguistic pattern-based approach as pre-trained transformer language models. As a result, a novel Pattern-based Deep Hate Speech (PDHS) detection model was proposed to detect the presence of hate speech using a cross-attention encoder with a dual-level attention mechanism. Instead of concatenating the features, our model computes dot product attention for better representation by reducing the irrelevant features. The first level of Attention is extracting aspect terms using predefined parts-of-speech tagging. The second level of Attention is extracting the sentiment polarity to form a pattern. Our proposed model trains the extracted patterns with term frequency, parts-of-speech tag, and Sentiment Scores. The experimental results on Twitter Dataset can learn effective features to enhance the performance with minimum training time and attained 88%F1Score

    Intrusion detection technique in wireless sensor network using grid search random forest with Boruta feature selection algorithm

    No full text
    Attacks in wireless sensor networks (WSNs) aim to prevent or eradicate the network's ability to perform its anticipated functions. Intrusion detection is a defense used in wireless sensor networks that can detect unknown attacks. Due to the incredible development in computer-related applications and massive Internet usage, it is indispensable to provide host and network security. The development of hacking technology tries to compromise computer security through intrusion. Intrusion detection system (IDS) was employed with the help of machine learning (ML) Algorithms to detect intrusions in the network. Classic ML algorithms like support vector machine (SVM), K-nearest neighbour (KNN), and filter-based feature selection often led to poor accuracy and misclassification of intrusions. This article proposes a novel framework for IDS that can be enabled by Boruta feature selection with grid search random forest (BFS-GSRF) algorithm to overcome these issues. The performance of BFS-GSRF is compared with ML algorithms like linear discriminant analysis (LDA) and classification and regression tree (CART) etc. The proposed work was implemented and tested on network security laboratory — knowledge on discovery dataset (NSL-KDD). The experimental results show that the proposed model BFS-GSRF yields higher accuracy (i.e., 99%) in detecting attacks, and it is superior to LDA, CART, and other existing algorithms

    An intelligent decision support system for crop yield prediction using hybrid machine learning algorithms

    No full text
    In recent times, digitization is gaining importance in different domains of knowledge such as agriculture, medicine, recommendation platforms, the Internet of Things (IoT), and weather forecasting. In agriculture, crop yield estimation is essential for improving productivity and decision-making processes such as financial market forecasting, and addressing food security issues. The main objective of the article is to predict and improve the accuracy of crop yield forecasting using hybrid machine learning (ML) algorithms. Methods: This article proposes hybrid ML algorithms that use specialized ensembling methods such as stacked generalization, gradient boosting, random forest, and least absolute shrinkage and selection operator (LASSO) regression. Stacked generalization is a new model which learns how to best combine the predictions from two or more models trained on the dataset. To demonstrate the applications of the proposed algorithm, aerial-intel datasets from the github data science repository are used
    corecore